## RF and EMC Formulas and Charts

Conversions for $50 \Omega$ Environmen


Connector Power Handling VS. Frequency


AR Cable Loss
 25 AR Coble Asembly loss


Modulation Examples

MM MM Medical equipments)
rruprapa
grumpun
fampandua

 4 Hmmer



| VSWR Calculations | Unit Conversions |  |
| :---: | :---: | :---: |
| VSWR $=$ Voltage Standing Wave Ratio | $\underbrace{\substack{\text { Leg }}}_{\text {Lnear } \rightarrow \text { log }}$ | $\mathrm{dBm}=20 \cdot \log (\mathrm{Clals})+13$ |
|  | Ampstodim | $\mathrm{dBm}=20 \mathrm{Log}$ (Amps) |
| $\text { vswr }=\frac{E_{\text {max }}}{E \min }=\frac{V_{\text {max }}}{V_{\text {min }}}=\frac{l+\rho}{1-\rho}$ |  |  |
|  |  | $\mathrm{dB} \mu \mathrm{A}=10 *$ Log (Watts) +103 |
| $\frac{P_{r}}{P_{\mathrm{f}}}=\left(\frac{\mathrm{V} \text { SRR }-1}{\mathrm{VSWR}+1}\right)^{2}$ | Lnear $\rightarrow$ log |  |
|  | Watat domm | dem $=10.009$ (Wats) 30 |
|  | Vomet |  |
| $p=$ Reflection Coefficient | 21tocs 8 | di8 $=20$ O $\log (\Omega)$ |
| $\rho=\left\|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right\|$ | ${ }^{\text {Log } \rightarrow \text { Linoar }}$ |  |
|  | demto Watts | Wolts $=10$ |
| RL(dB)= Retur Loss | dibliovols |  |
|  | dBatos | $\Omega=10$ (em) |
| $R L(d B)=-20 \log (\rho)$ | ${ }_{\text {Log } \rightarrow \text { Linoar }}$ |  |
| ML(dB) = Mismatan Loss | dinwiowats | Wotss $=10$ |
| $M L(d B)=-10 \log \left(1-\rho^{2}\right)$ |  | Watis $=10$ |
| Power Reflected \% $=p^{2} \times 100$ | demt Volats | volis $=10\left(\frac{(m m-1.8)}{20}\right)$ |
|  | dbiatiols | Volis $=10$ |
| Power Transmitted \% $=\left(1-\rho^{2}\right) * 100$ | dBm to amps |  |
|  | dibivo amms | ms $=10$ |

Field \& Power Calculations Raciated Field Strength
dB $V / m$ mov $/ m \quad V / m=10\left(\frac{\left(B B_{H} V / m-120\right.}{20}\right)$

Newv/m wifid ded
$\mathrm{V} / \mathrm{m}_{\text {noex }}=10\left(\frac{\mathrm{BB}+20 \mathrm{~L}+\log \left(\mathrm{V} / \mathrm{m}_{\text {sater }}\right)}{20}\right)$
$\mathrm{V} / \mathrm{m}=\sqrt{30=\text { Wats } s=G \text { Gain } \mathrm{n}_{\text {numeric }}}$
Watts $=\frac{(\mathrm{V} / \mathrm{m} * \text { meters })^{2}}{30.6 \sin }$



Power Reauired for Field or Distance Change





$\mathrm{aB}_{\mu}=\mathrm{CBH} \mathrm{V}-\mathrm{db} \Omega$
$\mathrm{dB} \mu \mathrm{A}=\mathrm{dB} \mathrm{V}-20 * \log (\Omega)$
Power Reauired for BCI Test
Power neededed or BCC I Probee ( 500 ) for fiven


$$
\begin{aligned}
& \text { Watis }=10\left[\frac{l+10.006(\text { Volts } \% / 50)}{10}\right] \\
& \text { Watts } \left.=10 \frac{(1400.006 \text { (Amms. } 500}{10}\right)
\end{aligned}
$$


Power neededed for BCI probe or EM Clamp (1502)
for given Insefion loss(lLCBC)

Wats $\left.\left.=10 \frac{[100.006(\text { Ampsser}}{10} 50\right)\right]$
Power Reauired for TEM Cell
Hegotrofter
Wotis $=\frac{(\mathrm{v} / \mathrm{m} * \text { Height } * 0.5)^{2}}{Z_{\text {eno }}}$
Power Required for Gtem Cell




## intermodulation Products

 (Multi-Tone)

