RF and EMC Formulas and Charts

Connector Power Handling VS. Frequency

AR Cable Loss

AR offers a standard line of low loss microwave coaxial cables. The maximum operating frequency and power handling capability of the cable is determined by the lowest frequency or power connector.

Modulation Examples

CW Continuous Wave (un-modulated signal)
AM (Medical equipments) with 2 Hz frequency and 80% modulation depth
AM (Telecom applications) with 1 kHz frequency and 80% modulation depth
AM (IEC 61000-4-6) with 1 kHz frequency and 80% modulation depth
AM (ISO 11452) with 1 kHz frequency and 80% modulation depth
PM (alarm system components EN 50130-4) with 50% duty cycle and 1 Hz repetition
PM (MIL STD 461) with 50% duty cycle and 1 kHz repetition

Linearity/Gain

Linearity - an amplifier is said to be in its linear region when its output power is proportional to its input power and still capable of delivering additional power.

Gain - The ratio of amplifier output power to the input power.

1 dB compression point - this is the output power level where a 10 dB increase at the input produces a 9 dB increase in output power (10 dB - 9 dB = 1 dB).

3 dB compression point - the output power level where a 10 dB increase at the input only results in a 7 dB increase in output power (10 dB - 7 dB = 3 dB). Above this point the amplifier is said to be in "saturation."

Rated output power - the output power with a 0 dBm input.

Saturated power - here an increase in input power will have no increase in output power. At this point, the amplifiers is said to be in full saturation.

Input Power Levels

Signal Generator:	1 milliwatt which is equivalent to 0 dBm
Function Generator:	1 milliwatt or 224 millivolts rms into 50 Ω
Max input before damaging amplifier:	+13 dBm or 20 milliwatts (20 times more power than 0 dBm)
Cain	

VSWR Conversion Chart

Voltage Power Return Power Transmission Reflective Reflected Loss Transmitted Loss % dB dB % 13.0 🛨
 10.0

 9.0

 8.5

 8.0

 7.5

 7.0
 90 -80 + 6.5 -+ 6.0 -70 + 5.0 -4.5 -4.0 I 60 -2.5 3.5 -3.0 -50 -2.5 4.0 -

VSWR Calculations

Unit Conversions

Linear ightarrow Log dBm = 20 * Log (Volts) + 13 dBm = 20 * Log (Amps) + 47 Amps to dBm $dB\mu V = 10 * Log (Watts) + 137$ Watts to $Db\mu V$ $dB\mu V = 20 * Log (Amps) + 154$ Amps to DbµV $dB\mu A = 10 * Log (Watts) + 103$ Watts to dBµA dBµA = 20 * Log (Volts) + 86 Volts to dBµA Linear \rightarrow Log dBm = 10 * Log (Watts) + 30 Watts to dBm dBm = 20 * Log (Volts) +120 Volts to dBµV $dB\mu A = 20 * Log (Amps) + 120$ Amps to dBµA $dB\Omega = 20 * Log (\Omega)$ Watts = $10^{\left(\frac{\text{dBm} - 30}{10}\right)}$ Log ightarrow LinearVolts = $10 \left(\frac{dB\mu V - 120}{20} \right)$ $Amps = 10 \left(\frac{dB\mu A - 120}{20} \right)$ dBµA to Amps $\Omega = 10 \left(\frac{\text{dB}\Omega}{20} \right)$ $Log \rightarrow Linear$ Watts = $10 \left(\frac{dB_{\mu}V - 137}{10} \right)$ $dB\mu V$ to Watts Watts = $10 \left(\frac{dB\mu A - 103}{10} \right)$ dBµA to Watts Volts = $10 \left(\frac{\text{dBm} - 13}{20} \right)$ Volts = $10\left(\frac{dB\mu A - 86}{20}\right)$ dBµA to Volts $Amps = 10 \left(\frac{dBm - 47}{20} \right)$ dBm to Amps $Amps = 10 \left(\frac{dB_{\mu}V - 154}{20} \right)$ dB_µV to Amps

Harmonics

Harmonics are (usually unwanted) signals which are exact multiples of the operating frequency.

Power Transmitted % = $(1 - \rho^2) * 100$

SPURIOUS are other unwanted signals. Amplifiers do not generate signals (other than IMD) unless they are unstable.

Field & Power Calculations
Radiated Field Strength
$dB_{\mu} V/m \text{ to } V/m$ $V/m = 10 \left(\frac{dB_{\mu} V/m - 120}{20} \right)$
V/m to dB_{μ} V/m dB_{μ} V/m = 20*Log (V/m) + 120
New V/m with dB Δ
$V/m_{new} = 10 \left(\frac{dB\Delta + 20 * Log (V/m_{start})}{20} \right)$
V/m = $\frac{\sqrt{30*Watts*Gain_{numeric}}}{Meters}$
Watts = $\frac{(V/m*meters)^2}{30*Gain_{numeric}}$
$V/m = \frac{\sqrt{30*Watts*10_{numeric} \left(\frac{Gain_{dBi}}{10}\right)}}{Meters}$
Watts = $\frac{\left(V/m*meters\right)^2}{30*10\left(\frac{Gain_{dBi}}{10}\right)}$
Power Required for Field or Distance Change Power required if gain remains constant (in far field using the same antenna and changing the field level or rest distance)
For Field Change Watts _{New} = Watts _{Old} $\frac{(V/m_{new})^2}{(V/m_{old})^2}$
For Distance Change Watts _{New} = Watts _{Old} $\frac{(Meters_{New})^2}{(Meters_{Old})^2}$
Conducted Current Measurement Using a Current Probe Where reading is in dB μ V and probe factor is dB Ω or Ω dB μ A = dB μ V – db Ω dB μ A = dB μ V – 20 * Log(Ω)
Power Required for BCI Test Power needed for BCI probe (50 Ω) for given Insertion loss (IL(dB)) Watts=10 $\left(\frac{IL+10*LOG \left(\frac{Volts^2}{50}\right)}{10}\right)$
Watts=10 $\left(\frac{\text{IL+10+LOG}(\text{Amps}^2 \cdot 50)}{10}\right)$

Power needed for BCI probe or EM Clamp (150 Ω) for given Insertion loss (IL(dB))

Watts=10

| IL+dBµA-73

Power Required for GTEM Cell Height in meters

Watts =
$$\frac{(V/m * SeptumHeight)^2}{Z_{(50\Omega)}} * flatness * modulation$$

www.arworld.us

Antenna Equations

Far Field Distance Estimation Dipole & Log-periodic antennas

FarField = $\frac{\lambda}{2*\pi}$

Horn Antennas

```
FarField = \frac{2*aperature^2}{2}
```

Far Field Equations Gain Over Isotropic

 $Gain_{Numeric} = 10 \left(\frac{Gain_{dBi}}{10} \right)$ Gain_{dBi} = 10 * Log (^{Gain}_{Numeri} (Meters*V/m) 30*Watts (Meters*V/m)² Gain_{dBi} = 10 * Log 30*Watts

Gain_{dBi} = 20 * Log (MHz) – AF – 29.79

Antenna Factor (AF) AF = 20 * Log (MHz) – Gain_{dBi} – 29.79

 $AF = 20 * Log (MHz) - 10 * Log (Gain_{numeric}) - 29.79$

Find Antenna Spot Size, Beam Width and Distance

 $Spot_{meters} = 2 * Distance_{meters} \tan \left[\frac{Angle_{3 dB}}{2} \right]$

Spot_{meters} $Distance_{meters} = 2*\tan\left(\frac{\text{Angle}_{3dB}}{2}\right)$ Angle_{3 dB} = $2 * \tan^{-1} \frac{\text{Spot}_{\text{meters}}}{2 * \text{distance}}$

Intermodulation Products (Multi-Tone)

Fundamental Tones and Intermodulation Products

 $IP_3 = Power(f_1 \& f_2) + \frac{3IM}{2}$ where Power ($f_1 \& f_2$) = the power in each fundamental signal, $f_1 \& f_2$. (Note that $f_1 = f_2$)

In actual practice, to measure 3IM, the two fundamental tones are set at a level of 10dB below the 1dB compression point of the amplifier.

Thus, $Power(f_1 \& f_2) = Po(@ 1dB compression) - 10dB$, where Po is the output power at the 1dB compression point of the amplifier.

